

Tethys RESTful Web Services Interface
A manual for accessing a Tethys server using a representational state transfer (REST) interface

Tethys, Antioch mosaic, 3rd century from Baltimore Museum of Art

 Tethys Web Services 2

Contents
Introduction ... 2
XQuery Resource .. 3

POST – Run XQuery or JSON database query .. 3
XQuery .. 3
JSON ... 4
Optional form variables .. 8

Collection Resources .. 8
GET – Retrieval of documents ... 8
POST – Adding/changing documents ... 9

POST add (deprecated) ... 9
POST ODBC (deprecated) .. 10
POST import ... 10
POST rebuild .. 13
POST reindex .. 13

DELETE – Deletion of documents ... 13
Attach Resource .. 13
BatchLogs Resource ... 14
Tethys Resource .. 14

Get ... 14
Put ... 14

Schema Resource .. 15
Get ... 15

ODBC Resource.. 16
GET ... 16

References ... 16

Introduction
Tethys provides web services via a representational state transfer (REST, Fielding, 2000)
interface. RESTful architectures identify resources via uniform resource locators (URLs) and
provide operations to create, remove, update and delete items associated with the resource. It is

 Tethys Web Services 3

assumed that the reader is familiar with Tethys and this work merely documents the interface
that can be used by other programs to interact with Tethys.

Tethys provides a series of resources to the user:

• Attach – Document attachments, e.g. a spectrogram or short waveform.
• BatchLogs – Logs for batch operations, primarily used in rebuilding the database from

source documents.
• XQuery – A resource to query the Tethys database.
• Collection resources – These resources represent individual Tethys collections. Current

collection resources are:
o Detections
o Deployments
o Events
o Localizations
o mediator_cache
o SourceMaps
o ITIS
o SourceMaps
o SpeciesAbbreviations

An example resource for a server running on port 9779 (the default port) accessed from the
server machine would be: http://localhost:9779/XQuery. Examples throughout this document
will use localhost as the server, these should be updated with the desired server’s address.

Clients can use hypertext transfer protocol (HTTP) to operate on these resources via the methods
GET, PUT, DELETE, and POST. In general, GET is used to access part of a resource, PUT to
add information to a resource, DELETE to remove part of a resource, and POST to either update
or add to the resource. PUT and POST can be somewhat confusing, as any message to the server
that requires a multi-part form data (e.g. attachments) must use a POST message. In Tethys,
POST is used to add documents to the database and to query. POST is used for queries as the
XQuery is passed as field “XQuery” in a multipart form.

XQuery Resource

POST – Run XQuery or JSON database query
POST is the only method supported for resource XQuery. One mandatory body attachment,
(XQuery or JSON) is expected with the post operation along with a set of optional form
variables.

XQuery
The XQuery body should contain a valid XQuery which will be executed (see plan for
exceptions). See the Tethys manual for information on XQuery and our extensions to support
external collections (e.g. physical data such as sea surface temperature). The result is returned in
XML.

 Tethys Web Services 4

The following is an example XQuery. XQueries can be generated automatically from the Tethys
Web Client interface.

<ty:Result xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> {
 (: Determine the taxonomic serial number for Lagenorhynchus obliquidens,
 which are abbreviated as Gg in the SIO.SWAL.v1 map :)
 let $tsn0 := lib:abbrev2tsn("Gg", "SIO.SWAL.v1")
 return
 for $Detections0 in collection("Detections")/ty:Detections[
 Effort/Kind/SpeciesID = $tsn0 and OnEffort/Detection/SpeciesID = $tsn0]
 return
 <Detections>{
 for $Detections2 in $Detections0/OnEffort/Detection[SpeciesID = $tsn0]
 return
 <Detection>{
 $Detections2/Call,
 $Detections2/Start,
 $Detections2/End
 }</Detection>
 }</Detections>
} </ty:Result>

JSON
A JSON body is converted into an XQuery and executed. The JSON specification contains the
following keys and values:

• select – A list of selection criteria. Each criterion is a JSON schema, { }, with the
following values:

o op – Specifies a selection operation such as equality, greater than, etc. These
should be valid XQuery operators.

o operands – A list of operands to which the operator will be applied. The query
translator relies on the paths that select elements being in the first position.

o optype – Indicates how the operands are to be combined with the operator. Valid
optypes: binary (or infix which is equivalent) and function. Function indicates
that the op should be applied as a function to the operands. Example:
“op”:”foobar”, “operands”: [“a”, “b”], “optype”:”function” foobar(a, b)

For a concrete example, this entry would allow one to select detection documents
with ≥ 1 on-effort detection. “op” : “exists”, “operands” :
“Detections/OnEffort/Detection”, “optype”: “function”.

• return – A list of values to be returned. Currently, no functions may be applied to these,
but we plan to extend this in the future.

• species – This schema is optional and has up to two keywords:
o query – Used to specify how the query denotes species names. Without query, we

assume that all species are encoded as Integrated Taxonomic Information System
(ITIS) taxonomic serial numbers (TSNs). The query allows us access Tethys.xq
library functions for converting strings to TSNs. The relevant functions are:

https://itis.gov/

 Tethys Web Services 5

 lib:completename2tsn(latin) which converts a Latin species name to TSN.
"query":{
 "op":"lib:completename2tsn",
 "operands": ["%s"],
 "optype":"function"
}

 lib:vernacular2tsn(language, common) which converts an accepted
vernacular name in a given language to a TSN. ITIS has good support for
English, and partial support for a wide variety of languages. In general,
we do not recommend querying with common names (e.g. English: Blue
Whale) without error checking due to the difficulty in constructing
appropriate strings which are case sensitive.

 "query":{
 "op":"lib:vernacular2tsn",
 "optype":"function",
 "operands":["%s", "English"]
 }

 lib:abbrev2tsn(abbrev_map_name, abbreviation). Given an abbreviation
map name (see http://your_tethys_server:port/SpeciesAbbreviations or
query the SpeciesAbbreviatoins collection for Abbreviations/Name), and
an abbreviation, return the TSN.
 "query":{
 "op" : "lib:abbrev2tsn",
 "optype" : "function",
 "operands": ["%s", "NOAA.NMFS.v1"]
 }

The translation is specified with op, optype, and operands values similar to those
in the select statements. The op key specifies the function, the optype is
“function,” and the operands list is the set of values on which the function will
operate. Species names will be substituted into the function in the position
occupied by the special string “%s”. The example query below translates Latin
species names to TSNs.

o return – Translates TSNs contained in SpeciesId elements contained in the output
to human readable formats. As with query, we expect op, operands, and optype.
Relevant functions with examples of result entries:
 lib:tsn2vernacular(tsn, language) – Specify a language other than Latin

(e.g., English, Spanish). If there is no entry in the language, the Latin is
used.
 "return":{
 "op":"lib:tsn2vernacular",
 "operands": ["%s", "Spanish"],
 "optype": "function"
 }

 lib:tsn2completename(tsn) – Translate to Latin name.
 "return":{
 "op":"lib:tsn2completename",

 Tethys Web Services 6

 "operands": ["%s"],
 "optype": "function"
 }

 lib:tsn2abbrev(tsn, abbreviation_map_name) – Translate to an
abbreviation.
 "return":{
 "op":"lib:tsn2abbrev",
 "operands": ["%s", "SIO.SWAL.v1"],
 "optype": "function"
 }

The translation is specified with op, optype, and values similar to those in select
and the query above.

o Specifies a language (Latin, English, Spanish, …) into which TSNs in the output
are translated. If a species is not supported in a language, its Latin name is
returned.

• enclose – If present, expects an integer. A value of 1 will cause the generation of
enclosing XML elements. Defaults to 0. Enclosing elements are generated for each level
of selection criteria that are present.

At times, this can lead to surprising results. Suppose one wrote a query that included
Detections/OnEffort/Detection/Start in the return list but did not introduce criteria on
which on which specific on-effort selections were selected. As there are multiple
Detection elements, one might expect enclose to produce a <Detection> to wrap each
<Start>. This is not the case when there are no selection criteria that involve the
Detection element. Enclose only works when there are selection criteria. To force the
system to produce an enclosing <Detection> element, add a criterion to Detection, such
as the following select clause which just checks for existence:

{"optype":"function", "op": "exists", "operands": "Detections/OnEffort/Detection"}

• namespaces – If present, expects an integer. A value of 0 removes namespaces in output
documents which is good for some clients. Defaults to 1.

• enclose_join – When multiple collections are referenced, it is usually desirable to keep
associated records from the join relationship together. By default, an element <Record>
is generated that encloses results from each document group, letting users determine
things such as what deployment characteristics are associated with what detections, etc.
The name can be changed from “Record” by providing a string argument to enclose_join.
Use the value “omit” to prevent the production of this element.

Example JSON query:
{
 "select": [
 {
 "op": "=",
 "operands": ["Deployment/Project", "SOCAL"],
 "optype": "binary"
 },
 {

 Tethys Web Services 7

 "op": "=",
 "operands": ["Detections/Effort/Kind/SpeciesID", "Bm"],
 "optype": "binary"
 },
 {
 "op": "=",
 "operands": ["Detections/Effort/Kind/Granularity", "binned"],
 "optype": "binary"
 },
 {
 "op": "=",
 "operands": ["Detections/Effort/Kind/Granularity/@BinSize_m", 60],
 "optype": "binary"
 }
],
 "return": [
 "Deployment/Project",
 "Deployment/Site",
 "Deployment/DeploymentID",
 "Detections/Effort/Start",
 "Detections/Effort/End",
 "Detections/Effort/Kind",
 "Detections/Algorithm",
 "Deployment/DeploymentDetails"
]
"species":{
 "query":{
 "op":"lib:tsn2abbrev",
 "operands": ["%s", "SIO.SWAL.v1"],
 "optype": "function"
 },
 "return":{
 "op":"lib:completename2tsn",
 "operands":"%s",
 "optype":"function"
 }
}

This JSON query would be translated into the following XQuery

import module namespace lib="http://tethys.sdsu.edu/XQueryFns" at "Tethys.xq";
declare namespace ty = "http://tethys.sdsu.edu/schema/1.0";
<ty:Result xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> {
 let $tsn0 := lib:abbrev2tsn("Gg", "SIO.SWAL.v1")
 return
 for $Detections0 in collection("Detections")/ty:Detections[
 Effort/Kind/SpeciesID = $tsn0 and OnEffort/Detection/SpeciesID = $tsn0]
 return
 <Detections>{
 for $Detections2 in $Detections0/OnEffort/Detection[SpeciesID = $tsn0]
 return
 <Detection>{
 $Detections2/Call,
 $Detections2/Start,
 $Detections2/End
 }</Detection>
 }</Detections>
} </ty:Result>

 Tethys Web Services 8

Optional form variables

In addition to the mandatory XQuery or JSON multipart form variable, one can specify:

• plan – Allows the user to request information related to the query in lieu of execution by
specifying a value other than 0. Valid values and their behavior:

o plan=0 (or omitted) – The query is executed (the same behavior as when plan is
omitted).

o plan=1 – The database manager will return an XML document describing how the
query will be executed. This allows one to examine details such as whether or not
indices are used. See the chapter in the Oracle Berkeley db XML Getting started
Guide on verifying indices using query plans for details.
CAVEATS: Does not currently support external XQuery queries using external
collections.

o plan=2 – For JSON queries, returns XQuery that is produced by the JSON
specification.

• dataType – Type of data to return. Defaults to XML. Jeff, please add documentation for
plot and save.

• species – May be a JSON string of the same format described above in the JSON queries.
If species is declared both in the JSON query and as a form variable, the value in the
JSON query will be used. Specify a language for species input/output: Latin, English,
Spanish, or French. This form should only be used for XQuery, there is a separate
mechanism to embed this in the JSON queries as described above.

• namespaces –If 0 (default 1), namespaces are removed from the output. Useful for some
clients that do not have sophisticated namespace processing.

• XSLT – If present, content must be a string containing a valid extensible stylesheet
language transformation (XSLT) that is applied to the result of the query if it is
successfully executed.

Collection Resources

GET – Retrieval of documents
There are two ways in which resources can be retrieved, via the XQuery resource (described in
its own section) or via the GET operator on the resource.

GET on a resource URL (e.g. http://localhost:9779/Detections) has the following behaviors:

• No arguments – Returns the number of XML documents in the collection

• Path argument – Interprets the path argument as an XPath query. The namespace
tethys.sdsu.edu is bound to the abbreviation ty. Example query:
http://localhost:9779//Detections/ty:Detections[DataSource%2FProj
ect = "SOCAL" and DataSource%2FSite = "M" and
DataSource%2FDeployment= 34]

 Tethys Web Services 9

Note that standard URL escapes such as %2F for / must be used for /s and other
characters that are for XPath instead of part of the URL.

• Document Identifier parameter – Document identifiers are derived from the basename of

documents that are submitted to Tethys. This is specified via ?DocId:
http://localhost:9779//Detections/?DocId= SOCAL45H_HF_Gg_Lo_jst
where SOCAL45H_HF_Gg_Lo_jst was derived from detection document
SOCAL45H_HF_Gg_Lo_jst.xls that was submitted to the database.

• Report indices on collection with the ?Indices parameter. Shows a list of indices that
exist on the container. These are database indices that are used to increase the speed of
queries.

POST – Adding/changing documents
New documents can be added with the POST operator. POST supports several methods for
adding new documents that are specified as part of the path: add, ODBC, rebuild, and reindex.
It is assumed that the user is familiar with importing documents in Tethys, details can be found
in the Tethys manual.

Note that POST add and POST import are legacy methods and are likely to be removed in a
future release. Any new work should use POST import.

POST add (deprecated)
The add method can be used to add Microsoft Office Excel spreadsheets, XML documents, and
comma separated value documents. It supports the following variables and multipart body
components:

Variables:

• overwrite – Overwrite an existing document: 0 not allowed (default if absent), 1 allowed
• import_map – Specifies the import translation map to be used. This maps from user field

names to Tethys names. For Excel spreadsheets only, this can also be specified by
adding the text Parser to the first row of any column on the MetaData sheet and writing
the import map name in row two of the same column.

• species_map – Specifies a translation map between local abbreviations and Latin names.
As with import_map, Excel files can embed this in a column called SpeciesAbbreviation
on the MetaData sheet with the map name underneath it. Collections that do not report
species or that use taxonomic serial numbers directly need not worry about this variable.

Attachments
• data – The document file that is to be added. Mimetype must be specified.
• Attachment – File that is to be associated with this document, the mimetype should be

specified. Each attachment is expected to be referenced by name within the data.
Currently, attachments are only available for detections, and are typically used to show
an image (e.g. spectrogram) or a short clip of audio data. Attachment may be repeated.
If many files are to be added, they can be placed in a zip archive. Image files should be
in subfolder image and audio files in subfolder audio.

 Tethys Web Services 10

Resources that expect attachments will verify submissions and report any missing attachments.
This can be used as a strategy to avoid having to parse the document being submitted on the
client side. In our document submission client, we submit a document, check to see if missing
attachments are the only problem, and if they are prepare a new submission with the needed files.
This does require the document to be transmitted twice, but saves the additional burden of
writing parsing tools for anything but the XML that is returned from the server.

POST ODBC (deprecated)

Open database connectivity (ODBC) is designed to allow data interchange between multiple
formats and ODBC libraries let Tethys import data from a wide variety of sources. See the data
import section of Tethys for details.

The ODBC method is similar to the add method. Data added by ODBC can either take the form
of a file that is transmitted to the Tethys server, or instructions to access a network resource.
Both methods share the following variables and body parts:

• import_map – as above
• species_map – as above
• overwrite – as above
• Attachment – as above

ODBC file submission expects a data file attachment as in the add method. The ODBC
connection string will be automatically determined for supported types (Excel, XML, CSV,
Access). See the Tethys manual for details.

Network submissions expect a ConnectionString parameter that specifies how the data source is
to be opened.

When connecting to databases, it is common to import multiple documents at once (e.g. many
deployments stored in a separate database). Document names will be automatically generated
for each instance. As the number of documents may decrease from one database read to another
(e.g. somebody deleted records), it is not recommended to use the overwrite parameter when
reading database records. Rather, clear the collection (or at least documents derived from
database records within the collection), then import the database.

POST import
Import is a post interface designed to replace POST add and POST ODBC.

POST expects a series of form multipart bodies.

• specification – File containing XML that specifies the how data will be formatted:
<?xml version="1.0" encoding="UTF-8"?>
<import>
 <!-- Name that will be used for the associated XML document.
 If more than one document is generated, sequential numbers
 will be assigned, e.g. name1, name2, ...
 If absent, basename of first source will be used, e.g.
 if source is SOCAL32M-HF-SBP.xlsx, use SOCAL32M-HF-SBP.

 Tethys Web Services 11

 -->
 <docname>name</docname>
 <!-- Replace an existing document? -->
 <overwrite>true|false</overwrite>
 <!— Name of mapping between user data and Tethys
 Must exist in SourceMaps collection -->
 <source_map>import_map_name</source_map>
 <!-- For documents that refer to species, how are species
 declared:
 TSN - ITIS taxonomic serial number (default if absent)
 Latin - scientific name of taxon
 abbreviation map name - Name of mapping in collection
 SpeciesAbbreviations
 -->
 <species_map>TSN</species_map>
 <sources>
 <source>
 <!-- What is being sent?
 file - A file in the multipart body attachment. It is
 assumed that the file type can be derived from the file
 extension and an appropriate ODBC connection string will
 be generated by the server.
 resource - A resource accessible by ODBC on the remote
 server.
 -->
 <type>file|resource</type>

 <!-- name distinguishes this source from other sources
 and is only required when multiple sources are present
 Although it is recommended.
 -->
 <name>sourcename</name>

 <!—- Required under the following conditions:
 Type is file or
 Resource will be establishing an ODBC connection to a
 File, regardless of the file type. Examples:
 Excel file
 Access database that is not served on the network
 Comma separate value (CSV) file(s) – Each file is considered
 a table. Multiple files can be combined into a zip file
 but the transfer must be done as type resource with a connection
 string.
 -->

 <file>filename</file>

 <!-- ODBC connection string.
 Optional for type file. If specified, remote system
 will not attempt to guess the connection string. For
 example, a file ending in .xslx will result in the server
 setting up a connection string to read Excel files.
 Required for type resource.
 -->
 <connectionstring></connectionstring>
 <odbc>
 <param1> … </param1>
 <param2> … </param2>
 </odbc>
 </source>
 <!-- Repeat source as needed.
 Name elements must have unique values -->

 Tethys Web Services 12

 </sources>
</import>

The data specification must be enclosed within an element called import. Children
include docname, overwrite, sources, and species_map.

The docname specifies the name that the data will have within the collection to which
they are added and must be unique. For documents that have a top-level Id element, we
strongly recommend that the docname be the same as the Id although this is not
mandatory. The collection itself is specified based on the URL to which the data are
posted (e.g., http://localhost:9779/Detections would add the data to the set of detections.
Data cannot be overwritten unless the optional overwrite element contains the word true.

Documents that contain species information are interpreted as follows and will sometime
use the speciesabbr element to specify a coding scheme:
1. If the document is XML, we expect numerical taxonomic serial numbers (TSNs as

per the Integrated Taxonomic Information System).
2. When documents are translated to XML, any element that marks a species will accept

TSNs or Latin names. If the speciesabbr is populated with anything other than TSN
or Latin, we will first look for codings within a SpeciesAbbreviations document
where Abbreviations/Name matches the specified speciesabbr.

• SourceFiles – One form variable for each file source specified in the sources. Mimetype

must be specified. Example: if a source specified:
 <type>file</type> <name>boobear.xls</name>
then there should be a form variable boobear.xls that contains the filename, mime media
type, and file handle.

• Attachment – File that is to be associated with this document, the mimetype should be
specified. Attachments may only be specified when a single document is being added.
Each attachment is expected to be referenced by name within the data. Multiple
attachments may be handled in one of two ways:

o Repeat Attachment label. Some clients do not allow this and Attachment1,
Attachment2, … is also acceptable.

o Create a zip archive of file attachments and attach it. Filepaths must match the
references.

Currently, attachments are only available for detection and localization documents, and
are typically used to show an image (e.g. spectrogram), a short clip of audio data, or
bespoke (custom) data. Resources that expect attachments will verify submissions and
report any missing attachments. This can be used as a strategy to avoid having to parse
the document being submitted on the client side. In our document submission client, we
submit a document, check to see if missing attachments are the only problem, and if they
are prepare a new submission with the needed files. This requires the document to be
transmitted twice, but saves the additional burden of writing parsing tools for anything
but the XML that is returned from the server.

Important notes for disaster recovery. When only simple files (comma separated values,
spreadsheets, xml) are sent, the source documents will be saved on the server, and the server’s
rebuild commands will be able to reconstruct the database if it is lost or corrupted. When more

https://itis.gov/

 Tethys Web Services 13

complicated resources are used (e.g. a database), source documents are not stored as multiple
snapshots of a database are neither practical nor desirable.

POST rebuild

This method is used to rebuild a method from the source data that was submitted to the Tethys
server. This is primarily used for disaster recovery.

Note that this does not include database records. We do not store these as we assume that users
backup their databases and can simply re-run a query. Two variables can be passed to this
resource method:

• clear: 0 – Do not clear before rebuilding (default), 1 – clear before rebuilding.
• update: 0 – Only update if a document does not exist (default), 1 – Always update.

Collection rebuild jobs can be quite long when there is a large database. As a consequence, a
batch log identifier is assigned and returned as the result of the operation. To check the result of
a rebuild, access the BatchLogs resource.

POST reindex

Sets indices to defaults and reindexes the container. Backup first and do not use this lightly.
Reindexing can take a long time. Smaller collections such as instrument deployments and
calibrations are typically very fast and reindexed in tens of seconds. In contrast, very large
containers, such as a detections container with tens of millions of individual detections might
take an hour to reindex.

DELETE – Deletion of documents
Documents may be deleted by invoking the DELETE method on a collection. A mandatory
keyword argument DocID must be used, which has the same format as for the GET method. To
remove all documents, the special DocID <*clear*> should be used. Note that this is
irreversible.

Attach Resource

The attach resource is used for retrieving attachments associated with collections via a GET
operation. It uses a path argument to specify the attachment. The first element of the path is the
collection resource (e.g. Detections) followed by the document identifier which is usually
composed of the basename of the file that was submitted. The attachment is specified with a
keyword argument indicating the attachment type and its name. Currently the only valid
attachments are Image and Audio.

Example: If image UknownPhenom.jpg was submitted with an Excel spreadsheet
ALEUT02BD_MF_MFAOrca_ajc.xls, one would retrieve the image using a GET on URL:

 Tethys Web Services 14

http://localhost:9779/Attach/Detections/ALEUT02BD_MF_MFAOrca_ajc?Image=UnknownPhe
nom.jpg

BatchLogs Resource

BatchLogs are used by operations that may take longer than a client can be expected to wait.
Instead, an identifier is returned to the user and this is used as the path for a BatchLogs GET
request.

Example:
http://localhost:9779//BatchLogs/DetectionsRebuildX32J97.log

Tethys Resource
The Tethys resource is used for controlling the Tethys server itself.

.

Get
The following GET operations are allowed on the Tethys resource:

• Tethys/ping – Returns an XML document if the server can respond:
<Tethys>

<ping>alive</ping>
</Tethys>

• Tethys/performance_monitor – Reports status of the query performance monitor

(on|off):
<Tethys>

<performance_monitor>on|off</performance_monitor>
</Tethys>

• Tethys/cache – Reports if Tethys is currently using the cache to service requests that
have been recently executed. Querying a cached document is faster.
<Tethys>
 <cache>yes|no</cache>
</Tethys>

Put
Several Put commands are allowed on the Tethys resource:

Tethys/shutdown – Exit the server cleanly.
Tethys/cache/ACTION – Controls caching of XQuery/JSONQuery requests. ACTION:
 on – Enables caching.
 off – Disables caching.
Tethys/checkpoint – Create a checkpoint in the transaction journaling system. This should be

done preferably before backing up or moving the database. Tethys will automatically do
this anytime the server is restarted.

 Tethys Web Services 15

Tethys/performance_monitor/ACTION – Set the performance monitor state. ACTION:
on – Start or continue monitoring performance.
off – Disable monitoring performance.
clear – Resets the performance monitor counts. Starts performance monitor if needed.

Example using curl URL tool: curl -X get http://localhost:9779//Tethys/ping . Graphical user
interfaces are available in tools like insomnia and postman. Most languages have libraries for
sending http and https packets, e.g. requests library in Python.

Schema Resource

The schema resource lets users query the schema that are used for the various collections. The
only supported operation is Get.

Get
The Schema resource requires a path element that is the root element of documents associated
with a collection. For example, the root element for all Deployments is Deployment. This
returns the XML schema document (XSD) or related information (see below). Two optional
query parameters are supported.

• format = JSON | XML (default). Returns the XML specification of the schema document
or a representation of it using the Badgerfish convention for converting XML to
Javascript object notation (JSON).

• parsetree = true | false (default). This option is only valid when ?format=JSON. This
returns a parsed tree representation of the schema document, discarding many things that
are not usually useful such as whether an element is a built-in type, simpleType, or
complexType. It consists of a set of nested dictionaries. Each element consists of list
with six elements:

o The minimum number of times the element can be present (0|1)
o The maxmum number of times the element can be present (usually 1 or Infinity)
o Type information. Not all elements have type information. If there is none, a null

value is present. Otherwise, a list of two items will be present. The first contains
the type information itself, e.g. xs:string, xs:dateTime, etc. The second item is a
dictionary that contains any auxiliary information related to the type. As an
example, taxonomic serial numbers (TSNs) are xs:integer types that represent a
species. Users frequently specify the names using a string, such as a Latin species
name. The SpeciesID element has a dictionary with key special and value ITIS,
which indicates that special processing may be needed.

o Attribute information. A dictionary containing attributes. Each attribute has a list
with a type information (as above for the element) and any documentation of the
attribute.

o Documentation of the element.
o Children. This is a dictionary of child elements, with each element having tuples

as described above.

http://localhost:9779/Tethys/ping
https://insomnia.rest/
https://www.getpostman.com/

 Tethys Web Services 16

ODBC Resource

Then open database connectivity resource is designed to provide information about Microsoft
ODBC capabilities on the server platform. ODBC is used in data import, see the Collections
Resource POST import documentation on page 10 for details.

GET
GET and GET drivers will return a plain text list of ODBC drivers supported on the server.
These may be used to help generate proper connection strings.

References

 Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, The University of CA, Irvine, Irvine, CA.

	Introduction
	XQuery Resource
	POST – Run XQuery or JSON database query
	XQuery
	JSON
	Optional form variables

	Collection Resources
	GET – Retrieval of documents
	POST – Adding/changing documents
	POST add (deprecated)
	POST ODBC (deprecated)
	POST import
	POST rebuild
	POST reindex

	DELETE – Deletion of documents

	Attach Resource
	BatchLogs Resource
	Tethys Resource
	Get
	Put

	Schema Resource
	Get

	ODBC Resource
	GET

	References

